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1
METHOD OF GENERATING TESSELLATION
DATA AND APPARATUS FOR PERFORMING
THE SAME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(a)
from Korean Patent Application No. 10-2013-0095159 filed
on Aug. 12, 2013, the disclosure of which is incorporated by
reference in its entirety herein.

BACKGROUND

1. Technical Field

Embodiments of the inventive concept relate to a method
of generating tessellation data, and more particularly, to a
method of generating compressed tessellation data.

2. Discussion of Related Art

Tessellation is the tiling of a plane using one or more
geometric shapes, called tiles, with no overlaps and no gaps.
In computer graphics, the term “tessellation™ is used to
describe the organization of information needed to give the
appearance of realistic three-dimensional objects.

A graphics processing unit (GPU) may render an image of
an object to be displayed on a display. The GPU may
perform a tessellation operation in the course of rendering
the image of the object to provide a finer image of the object.

The GPU generates several primitives for the image of the
object through the tessellation operation and stores data
corresponding to the primitives in an external memory.
However, since the GPU needs to read and write a lot of data
corresponding to the primitives in order to perform other
operations after the tessellation operation, it may consume a
lot of power and require a large bandwidth.

SUMMARY

According to an exemplary embodiment of the inventive
concept, there is provided a method of generating tessella-
tion data. The method includes analyzing patch data of each
of a plurality of patches; generating shared data that is
shared by the patches, non-shared data that are not shared by
the patches, and attribute data on an attribute of control
points of each of the patches from the each patch data
according to an analysis result; and compressing the non-
shared data and the attribute data.

The method may further include maintaining a group data
structure relating to the shared data, a patch data structure
relating to each of the non-shared data, and a control point
data structure relating to each of the attribute data based on
the shared data, the non-shared data, and the attribute data.

The shared data may include the number of control points,
a partitioning type, a domain face type, output data topology,
and a tessellation factor of the patches.

The non-shared data may include an index of each of the
control points included in each of the patches and a tessel-
lation factor of each patch.

The compressing may include compressing each patch
data structure and compressing each control point data
structure.

The group data structure may include a pointer indicating
each of patch data structures respectively matching the
patches related with the group data structure. The group data
structure may include a pointer indicating a next group data
structure to be transmitted following the current group data
structure. The group data structure may not include the
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2

pointer indicating the next group data structure when a size
of the group data structure is constant.

According to an exemplary embodiment of the inventive
concept, there is provided a system on chip (SoC) including
atessellation data generator configured to analyze patch data
of a plurality of patches, to generate a group data structure
that is shared by the patches, a patch data structure for each
of the patches that is not shared by the patches, and a control
point data structure including attribute data on an attribute of
control points of each of the patches from the patch data
according to a result of the analysis, and to encode the data
structures; and a graphics processing unit (GPU) configured
to decode the encoded data structures and process data
included in the decoded data structures.

The group data structure may include shared data that is
shared by the patches and the shared data may include the
number of control points, a partitioning type, a domain face
type, and output data topology.

The patch data structure may include non-shared data that
is not shared by the patches and the non-shared data may
include an index of each of the control points included in
each of the patches and a tessellation factor of each patch.
The patch data structure and the control point data structure
may be able to be compressed. For example, the GPU may
be configured to compress the patch data structure and the
control point data structure. The system on chip may be
implemented as part of an application processor. The tes-
sellation data generator may be implemented within a cen-
tral processing unit.

According to an exemplary embodiment of the inventive
concept, there is provided a data processing system includ-
ing the above-described system on chip, a memory config-
ured to store the patch data of the patches, and a memory
interface configured to transmit the patch data of the patches
from the memory to the system on chip.

According to an exemplary embodiment of the inventive
concept, there is a provided a method of generating a
hierarchal data structure for use in a tessellation operation.
The method includes: generating a first data structure having
shared data that is common to each patch among a plurality
of patches; generating a plurality of second data structures
for each patch, where each second data structure has indi-
cates of all control points of the corresponding patch; and
generating a plurality of third data structures for each patch,
where each third data structure has attributes about the
control points of a corresponding one of the patches.

The data within the second data structures may be unique
from one another. In an embodiment, the first data structure
includes pointers to each second data structure, and each
second data structure includes a pointer to a corresponding
one of the third data structures. The first data structure may
include a pointer to a next data structure to be transmitted
that includes shared data that is common to each patch
among another plurality of patches. Data within each of the
second and third data structures may be compressed. In an
embodiment, either the first data structure includes a tessel-
lation factor common to all the patches, or each second data
structure includes its own distinct tessellation factor.

BRIEF DESCRIPTION OF THE DRAWINGS

The present inventive concepts will become apparent and
more readily appreciated from the following description of
the exemplary embodiments thereof, taken in conjunction
with the accompanying drawings of which:
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FIG. 1 is a block diagram of a data processing system
according to an exemplary embodiment of the inventive
concept;

FIG. 2 is a diagram of hierarchical data structures gen-
erated by a tessellation data generator illustrated in FIG. 1
according to an exemplary embodiment of the inventive
concept;

FIG. 3 is a diagram of hierarchical data structures gen-
erated by a tessellation data generator illustrated in FIG. 1
according to an exemplary embodiment of the inventive
concept;

FIG. 4 is a structural diagram of shared data illustrated in
FIGS. 2 and 3 according to an exemplary embodiment of the
inventive concept;

FIG. 5 is a structural diagram of shared data illustrated in
FIGS. 2 and 3 according to an exemplary embodiment of the
inventive concept;

FIG. 6 is a structural diagram of non-shared data illus-
trated in FIG. 2 according to an exemplary embodiment of
the inventive concept;

FIG. 7 is a schematic block diagram of a graphics
processing unit illustrated in FIG. 1 according to an exem-
plary embodiment of the inventive concept;

FIG. 8 is a block diagram of a data processing system
according to other embodiments of the inventive concept;

FIG. 9 is a block diagram of a data processing system
according to an exemplary embodiment of the inventive
concept; and

FIG. 10 is a flowchart of a method of operating the data
processing system illustrated in FIG. 1, 8, or 9 according to
an exemplary embodiment of the inventive concept.

DETAILED DESCRIPTION

The inventive concept now will be described more fully
hereinafter with reference to the accompanying drawings, in
which exemplary embodiments of the invention are shown.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the exem-
plary embodiments set forth herein. In the drawings, the size
and relative sizes of layers and regions may be exaggerated
for clarity. Like numbers refer to like elements throughout.

It will be understood that when an element is referred to
as being “connected” or “coupled” to another element, it can
be directly connected or coupled to the other element or
intervening elements may be present. As used herein, the
singular forms “a”, “an” and “the” are intended to include
the plural forms as well, unless the context clearly indicates
otherwise.

FIG. 1 is a block diagram of a data processing system 10A
according to an exemplary embodiment of the inventive
concept. Referring to FIG. 1, the data processing system
10A includes a data processing device 100A, a display 300,
and a memory 400.

The data processing system 10A may be implemented as
a personal computer (PC), a portable electronic device (or
mobile equipment), or an electronic device including the
display 300 that can display image data.

The portable electronic device may be a laptop computer,
a cellular phone, a smart phone, a tablet PC, a mobile
internet device (MID), a personal digital assistant (PDA), an
enterprise digital assistant (EDA), a digital still camera, a
digital video camera, a portable multimedia player (PMP), a
personal navigation device or portable navigation device
(PND), a handheld game console, a wearable computer, or
an e-book reader.
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The data processing device 100A may control the display
300 and/or the memory 400. The data processing device
100A may control the overall operation of the data process-
ing system 10A.

A group of control points that define a part of a surface
may be referred to as a patch. The data processing device
100A may analyze patch data of each of a plurality of
patches output from the memory 400 and generate tessella-
tion data (e.g., shared data that is shared by the patches,
non-shared data that is not shared by the patches, and
attribute data on the attribute of a control point of each of the
patches) from the patch data of each of the plurality of
patches according to the analysis result.

According to an exemplary embodiment of the inventive
concept, the data processing device 100A compresses the
non-shared data and the attribute data, respectively. As an
example, a lossless compression algorithm such as Arith-
metic Coding, Huffman Coding, or Delta Coding may be
used to compress the data.

In an exemplary embodiment, the data processing device
100A maintains data structures for the shared data, the
non-shared data, and the attribute data, respectively. For
example, the data processing device 100A may maintain a
group data structure relating to the shared data, a patch data
structure relating to each non-shared data, and a control
point data structure relating to each attribute data based on
the shared data, the non-shared data, and the attribute data.

In an exemplary embodiment, the shared data among
multiple patches includes the number of control points, a
partitioning type (e.g., fractional odd, fractional even, inte-
ger, power2, etc.), a domain face type (e.g., triangle, quad,
iso-line, etc.), and output data topology. In an exemplary
embodiment, the non-shared data include indices of control
points and inner/outer tesseslation factors which are differ-
ent among patches. In an exemplary embodiment, tessella-
tion factors are used to determine how much to subdivide a
patch. For example, the tessellation factors may determine
how many tiles a given patch will be subdivided into during
tessellation.

The data processing device 100A may be implemented in
a printed circuit board (PCB) such as a motherboard, an
integrated circuit (IC) or a system on chip (SoC). For
instance, the data processing device 100A may be a proces-
sor or an application processor.

The data processing device 100A includes a central pro-
cessing unit (CPU) 110A, a read-only memory (ROM) 120,
a random access memory (RAM) 130, a display controller
140, a memory interface 150, a tessellation data generator
170, and a graphics processing unit (GPU) 200A.

The CPU 110A may control the overall operation of the
data processing device 100A. For instance, the CPU 110A
may control the operations of the components 120, 130, 140,
150, 170, and 200A. The CPU 110A communicates with the
components 120, 130, 140, 150, 170, and 200A through a
bus 105. In addition, the CPU 110A may read and execute
program instructions.

For instance, programs and data stored in the memory
120, 130, or 400 may be loaded into an internal memory,
e.g., a cache memory (not shown), of the CPU 110A
according to the control of the CPU 110A. In an exemplary
embodiment, the CPU 110A includes multiple cores. A
multi-core processor is a single computing component with
two or more independent cores.

The ROM 120 may permanently store programs and/or
data. In an exemplary embodiment, the ROM 120 is imple-
mented as an erasable programmable ROM (EPROM) or an
electrically erasable programmable ROM (EEPROM).
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The RAM 130 may temporarily store programs, data, or
instructions. The programs and/or data stored in the memory
120 or 400 may be temporarily stored in the RAM 130
according to the control of the CPU 110A, the control of the
GPU 200A, or a booting code stored in the ROM 120. In an
exemplary embodiment, the RAM 130 is implemented as
dynamic RAM (DRAM) or static RAM (SRAM).

The display controller 140 may control the operation of
the display 300. For instance, the display controller 140 may
transmit image data, e.g., still image data, moving image
data, three-dimensional (3D) image data or stereoscopic 3D
image data, from the memory 400 to the display 300.

The memory interface 150 may function as a memory
controller that can access the memory 400. For instance, the
data processing device 100A and the memory 400 may
communicate with each other through the memory interface
150. The data processing device 100A and the memory 400
may transmit data to and receive data from each other
through the memory interface 150.

In an exemplary embodiment, the tessellation data gen-
erator 170 analyzes patch data of each of a plurality of
patches output from the memory 400 and generates hierar-
chical data structures with respect to the patches based on
the analysis result. For instance, the tessellation data gen-
erator 170 may analyze the patch data of each of the plurality
of patches based on a patch type and generate the hierar-
chical data structures with respect to the patches based on
the analysis result.

The patch type may be identified by a type of patch (e.g.,
a curve type or a surface type) and tessellation information
(e.g., tessellation factor, a partitioning type, a domain face
type, and/or output data topology and so on).

FIG. 2 is a diagram of hierarchical data structures gen-
erated by the tessellation data generator 170 illustrated in
FIG. 1 according to an exemplary embodiment of the
inventive concept. Referring to FIGS. 1 and 2, the tessella-
tion data generator 170 analyzes patch data of each of a
plurality of patches output from the memory 400 and
generates shared data S_DATA shared by the patches, non-
shared data NS_DATA that are not shared by the patches,
and attribute data AD on the attribute of control points of
each of the plurality of patch data according to the analysis
result.

In an exemplary embodiment, the tessellation data gen-
erator 170 compresses the non-shared data NS_DATA and
the attribute data AD, respectively.

The tessellation data generator 170 generates data, which
is shared by each of a plurality of patches, from the patch
data of each of the plurality patches as the shared data
S_DATA. For instance, the tessellation data generator 170
may generate data which are similar to each other or the
same as each other among each of a plurality of patches as
the shared data S_DATA.

FIG. 4 is a structural diagram of the shared data S_DATA
illustrated in FIGS. 2 and 3 according to an exemplary
embodiment of the inventive concept. Referring to FIG. 4,
the shared data S_DATA includes the number of control
points N_CPs, a partitioning type PT, a domain face type
DFT, and output data topology OT. In an exemplary embodi-
ment of the shared data S_DATA of FIG. 4, one or more of
the control points N_CP, the partitioning type PT, the
domain face type DFT, and the output data topology OT may
be omitted.

The number of control points N_CPg, the partitioning
type PT, the domain face type DFT, and the output data
topology OT may be substantially similar or the same among
a plurality of patches. For instance, the partitioning type PT,
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the domain face type DFT, and the output data topology OT
may be set according to the control of the CPU 110A. The
partitioning type PT, the domain face type DFT, and the
output data topology OT may be able to be programmed by
a manufacturer or a user.

FIG. 5 is a structural diagram of the shared data S_DATA
illustrated in FIGS. 2 and 3 according to an exemplary
embodiment of the inventive concept. Referring to FIG. 5,
the shared data S_DATA includes a tessellation factor TF,
the number of control points N_CPg, the partitioning type
PT, the domain face type DFT, and the output data topology
OT. In an exemplary embodiment of the shared data
S_DATA of FIG. 5, one or more of the tessellation factor TF,
the number of control points N_CPg, the partitioning type
PT, the domain face type DFT, and the output data topology
OT may be omitted.

The tessellation data generator 170 may set or define the
tessellation factor TF shared by a plurality of patches
according to the control of the CPU 110A. The tessellation
factor TF included in the shared data S_DATA may be set by
a manufacturer or a user.

Referring to FIGS. 1, 2, 4, and 5, the shared data S_DATA
is data which is substantially common to a plurality of
patches and may be data that can be shared by the patches.
Accordingly, the shared data S_DATA may be generated in
a single data set or single data structure for all of the patches.

The tessellation data generator 170 generates data which
cannot be shared by a plurality of patches from the patch
data of each of the patches as the non-shared data
NS_DATA. For instance, the tessellation data generator 170
may generate data which are substantially not similar among
the patches as the non-shared data NS_DATA. In an exem-
plary embodiment, the tessellation data generator 170 com-
presses the non-shared data NS_DATA.

FIG. 6 is a structural diagram of the non-shared data
NS_DATA illustrated in FIG. 2 according to an exemplary
embodiment of the inventive concept. Referring to FIG. 6,
the non-shared data NS DATA includes an index IDX of
each of several control points included in each of a plurality
of patches and the tessellation factor TF of each of the
patches. In an exemplary embodiment, the non-shared data
NS_DATA includes the control points themselves.

In an exemplary embodiment where the tessellation factor
TF is predetermined according to the control of the CPU
110A as shown in FIG. 5, the tessellation factor TF is not
included in the non-shared data NS_DATA. Referring to
FIGS. 1 and 2 and FIGS. 4 through 6, each non-shared data
NS_DATA is different among a plurality of patches or is
unique to each of the patches. The non-shared data
NS_DATA is data that cannot be shared by the patches and
may be generated with respect to each of the patches.

The tessellation data generator 170 may generate the
attribute data AD on the attribute of control points with
respect to each of a plurality of patches. The attribute data
AD may include information about a position, color, normal
vector and texture coordinate of each of control points
included in each of the patches.

In an exemplary embodiment, the attribute data AD also
includes information about a parametric equation for each of
the patches. For example, the equation may be a curve
equation, a surface equation, etc. For example, the curve
equation may be a Hermite curve equation, a Bezier curve
equation, a Non-uniform rational B-spline (NURBS) curve
equation, a B-spline curve equation, etc. The attribute data
AD may be generated with respect to each of the patches. In
an exemplary embodiment, the tessellation data generator
170 compresses the attribute data AD.
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As shown in FIG. 2 or 3, the tessellation data generator
170 maintains a group data structure GDS relating to the
shared data S_DATA, patch data structures PDS, through
PDS,, relating to the non-shared data NS_DATA, and control
point data structures CDS, through CDS,, relating to the
attribute data AD based on the shared data S_DATA, the
non-shared data NS_DATA, and the attribute data AD.

The group data structure GDS includes the shared data
S_DATA, a next group data structure indication pointer
NGDS_P, an indication data S_BIT, number data N_PAT,
and patch data structure indication pointers PDS, P through
PDS,, P. The next group data structure indication pointer
NGDS_P is a pointer indicating a next group data structure
to be transmitted following the current group data structure
GDS. For instance, the next group data structure indication
pointer NGDS_P may indicate a memory address of the next
group data structure to be transmitted after the current group
data structure GDS is transmitted.

In an exemplary embodiment, when the size of the group
data structure GDS is the same as that of the next group data
structure, the group data structure GDS does not include the
next group data structure indication pointer NGDS_P. For
instance, when the size of the group data structure GDS is
the same as that of the next group data structure, the memory
address of the next group data structure may be calculated by
the tessellation data generator 170 and/or the GPU 200A. In
an exemplary embodiment of the group data structure GDS,
the next group data structure includes a bit indicating
whether the size of the group data structure is constant or
not.

The indication data S_BIT indicates which of tessellation
related data is shared with the group data structure GDS. In
a frame, patches can share the same tessellation information
such as partition type, face type, output topology, etc. In
order to avoid data redundancy, these data are stored just one
in a GDS. However, since all the tessellation information is
not always shared, the indication data S_BIT can be used to
indicate whether tessellation information is shared (e.g.,
S_BIT=1) or not shared (e.g., S_BIT=0). The number data
N_PAT indicates the number of patches related with the
group data structure GDS. The patch data structure indica-
tion pointers PDS ; P through PDS,, P are pointers respec-
tively indicating the patch data structures PDS, through
PDS,, matching the respective patches related with the group
data structure GDS. For example, in FIG. 2, if N=3, the
number data N_PAT=3.

According to an exemplary embodiment, the group data
structure GDS may also include an optional size data
NSD _BW. The size data NSD_BW indicates the com-
pressed size, e.g., bit-width of the non-shared data
NS_DATA included in the patch data structures PDS;
through PDS,.

The tessellation data generator 170 embeds the shared
data S_DATA, which can be shared by a plurality of patches,
in the current group data structure GDS just once when
transmitting the current group data structure GDS to the
GPU 200A, which may reduce waste of the bandwidth of
data and decrease power consumption for the transmission
of the data. In addition, the GPU 200A reads just once the
current group data structure GDS including the shared data
S_DATA from the memory 400 to process the patches,
which may be reduce the waste of the bandwidth of data and
decrease power consumption for an operation of reading the
data.

The patch data structures PDS, through PDS,, include the
non-shared data NS_DATA and control point data structure
indication pointers CDS,, P through CDS,, P, respectively.
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The control point data structure indication pointers CDS,, P
through CDS,, P are pointers respectively indicating the
control point data structures CDS, through CDS,, respec-
tively matching the patch data structures PDS, through
PDS,.

Each of the control point data structures CDS, through
CDS,, includes the attribute data AD. Each of the patch data
structures PDS, through PDS,, may be efficiently com-
pressed using data similarity among the patch data structures
PDS, through PDS,,. The control point data structures CDS,
through CDS,, may be efficiently compressed due to high
spatial locality of control points included in each of the
patches.

FIG. 3 is a diagram of hierarchical data structures gen-
erated by the tessellation data generator 170 illustrated in
FIG. 1 according to an exemplary embodiment of the
inventive concept. Referring to FIG. 3, the tessellation data
generator 170 analyzes patch data of each of a plurality of
patches output from the memory 400 and generates the
shared data S_DATA shared by the patches, the non-shared
data NS_DATA that are not shared by the patches, and the
attribute data AD on the attribute of control points of each
of the patches from the patch data according to the analysis
result.

As been described with reference to FIG. 2, the tessella-
tion data generator 170 may maintain the group data struc-
ture GDS relating to the shared data S_DATA, the patch data
structures PDS, through PDS,, relating to the non-shared
data NS_DATA, and the control point data structures CDS,
through CDS,, relating to the attribute data AD based on the
shared data S_DATA, the non-shared data NS_DATA, and
the attribute data AD.

The shared data S_DATA illustrated in FIG. 3 is the same
as that described with reference to FIGS. 4 and 5. The
non-shared data NS_DATA illustrated in FIG. 3 is the same
as that described with reference to FIG. 6. The group data
structure GDS illustrated in FIG. 3 is substantially the same
as that illustrated in FIG. 2.

Unlike the embodiments illustrated in FIG. 2, each of the
patch data structures PDS, through PDS,; include the non-
shared data NS_DATA and data structure indication pointers
CP, P through CP,, P, and each of the control point data
structures CDS, through CDS,, include a plurality of data
structures CP, through CP,, in the embodiment illustrated in
FIG. 3.

The data structure indication pointers CP, P through
CP,, P included in each of the patch data structures PDS,
through PDS,, are pointers respectively indicating the data
structures CP, through CP,, included in each of the control
point data structures CDS,; through CDS,, respectively
matching the patch data structures PDS,; through PDS,.
Each of the data structures CP, through CP,, include the
attribute data AD of each of control points included in each
of the patches respectively matching the patch data struc-
tures PDS, through PDS,,.

Referring to FIGS. 1 through 6, the tessellation data
generator 170 generates a hierarchical data structure, e.g.,
the group data structure GDS, the patch data structures PDS,
through PDS,,, and the control point data structures CDS;
through CDS,, from the patch data of each of a plurality of
patches transmitted from the memory 400. The tessellation
data generator 170 may encode the data structures and
generate encoded data structures. The tessellation data gen-
erator 170 may output the encoded data structures to the
GPU 200A.

In an exemplary embodiment, the tessellation data gen-
erator 170 compresses the data structures and transmits the
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compressed data structures to the GPU 200A. In an exem-
plary embodiment, the tessellation data generator 170 com-
presses only the patch data structures PDS, through PDS,,
and the control point data structures CDS, through CDS,,
and transmits compressed data structures and the group data
structure GDS to the GPU 200A.

The patch data structures PDS,; through PDS,, may be
efficiently compressed using data similarity among the patch
data structures PDS, through PDS,, and the control point
data structures CDS, through CDS,, may be more efficiently
compressed due to high spatial locality of control points
included in each of the patch and compressed data structures
are transmitted to the GPU 200A, so that the tessellation data
generator 170 may reduce waste of the bandwidth of data
transmitted to the GPU 200A and also decrease power
consumption for the transmission of the data.

In an exemplary embodiment, the tessellation data gen-
erator 170 stores the data structures GDS, PDS,; through
PDS,, and CDS, through CDS,, in the memory 400. Accord-
ingly, the GPU 200A may reduce waste of the bandwidth of
data and power consumption when reading the data struc-
tures GDS, PDS, through PDS,, and CDS, through CDS,,
from the memory 400.

The GPU 200A may perform operations related with
graphics processing to reduce the load of the CPU 110A. For
instance, the GPU 200A may process data included in data
structures, e.g., the group data structure GDS, the patch data
structures

PDS, through PDS,, and the control point data structures
CDS, through CDS,, generated by the tessellation data
generator 170 to perform a graphics processing related
operation, e.g., a tessellation operation.

FIG. 7 is a schematic block diagram of the GPU 200A
illustrated in FIG. 1. Although data input to the GPU 200A
is data output from the tessellation data generator 170 in the
embodiment illustrated in FIG. 7, the data input to the GPU
200A may be data output from the memory 400 in another
embodiment.

Referring to FIGS. 1 through 7, the GPU 200A includes
a control logic 210, a decoder 220, a vertex shader 230, a
hull shader 240, a data selection circuit 245, a tessellator
250, a domain shader 260, a geometry shader 270, a raster-
izer 280, a pixel shader 290, and an output merger 295.

The control logic 210 may control the overall operation of
the GPU 200A. For instance, the control logic 210 may
control the operation of the components 220, 230, 240, 245,
250, 260, 270, 280, 290, and 295. Each of the components
230, 240, 250, 260, 270, 280, 290, and 295 may be a unit that
performs a program instruction (or a shading program),
which is related with graphics processing and is output from
the RAM 130, according to the control of the control logic
210.

For instance, the program instruction may include a
vertex shader program instruction, a hull shader program
instruction, a tessellator program instruction, a domain
shader program instruction, a geometry shader program
instruction, a rasterizer program instruction, a pixel shader
program instruction, and/or an output merger program
instruction. The control logic 210 generates a control signal
(or a selection signal) for controlling the data selection
circuit 245 according to control information included in data
output from the decoder 220.

The decoder 220 processes data structures generated from
the tessellation data generator 170 and outputs data included
in the processed data structures to the vertex shader 230
and/or the data selection circuit 245 according to the control
of the control logic 210.
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In an exemplary embodiment, the decoder 220 decodes
encoded data structures generated from the tessellation data
generator 170 and outputs data included in the decoded data
structures to the vertex shader 230 and/or the data selection
circuit 245 according to the control of the control logic 210.
In an exemplary embodiment, the decoder 220 decom-
presses compressed data structures generated from the tes-
sellation data generator 170 and outputs data included in the
decompressed data structures to the vertex shader 230 and/or
the data selection circuit 245 according to the control of the
control logic 210.

Although an output signal (or data) of the decoder 220 is
input to only the vertex shader 230 and/or the data selection
circuit 245 in the embodiment illustrated in FIG. 7, the data
included in the data structures generated from the tessella-
tion data generator 170 may be processed by the decoder 220
and then input to the components 230, 240, 245, 250, 260,
270, 280, 290, and 295 according to the control of the
control logic 210 in other embodiments.

The vertex shader 230 processes data output from the
decoder 220, e.g., the attribute data AD included in each of
the control point data structures CDS, through CDS,,. For
instance, the vertex shader 230 may process the attribute
data AD using an operation such as transformation, morph-
ing, skinning, or lighting. The vertex shader 230 may output
processed attribute data to the hull shader 240.

The hull shader 240 may determine a tessellation factor
for a patch corresponding to the processed attribute data
output from the vertex shader 230. In an exemplary embodi-
ment, the hull shader 240 determines the tessellation factor
based on data output from the decoder 220, e.g., the parti-
tioning type PT included in the shared data S_DATA of the
group data structure GDS according to the control of the
control logic 210. The hull shader 240 may output the
determined tessellation factor to the data selection circuit
245.

The data selection circuit 245 may output the determined
tessellation factor output from the hull shader 240 or the
tessellation factor TF output from the decoder 220 to the
tessellator 250 according to the level of a control signal
output from the control logic 210. According to an exem-
plary embodiment, the tessellation factor TF is included in
the shared data S_DATA of the group data structure GDS. In
an exemplary embodiment, the tessellation factor TF is
included in the non-shared data NS_DATA of each of the
patch data structures PDS,; through PDS,.

For instance, when the control signal is at a first level, e.g.,
logic O or logic low, the data selection circuit 245 may output
the determined tessellation factor output from the hull
shader 240 to the tessellator 250. When the control signal is
at a second level, e.g., logic 1 or logic high, the data
selection circuit 245 may output the tessellation factor TF
output from the decoder 220 to the tessellator 250. Accord-
ing to an exemplary embodiment, the data selection circuit
245 is implemented as a multiplexer.

The tessellator 250 may tessellate tessellation domain
coordinates based on the tessellation factor output from the
data selection circuit 245. For instance, the tessellation
domain coordinates may be defined as (u, v) or (u, v, w). The
letters ‘v’ and ‘v’ may denote the axes of a 2D texture when
UV mapping is used to project a texture map onto a 3D
object. UVW coordinates are used in UVW mapping, which
allows texture maps to wrap in complex ways onto irregular
surfaces. Each point in a UVW may correspond to a point on
a surface. According to an exemplary embodiment, the
tessellator 250 tessellates the tessellation domain coordi-
nates according to the partitioning PT, the domain face type
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DFT, and the output data topology OT included in the shared
data S_DATA of the group data structure GDS output from
the decoder 220. The tessellator 250 may output tessellated
domain coordinates to the domain shader 260.

The domain shader 260 may calculate spatial coordinates
corresponding to the tessellated domain coordinates. For
instance, the spatial coordinates may be defined as (%, y, z).
The domain shader 260 may generate primitives such as
dots, lines, and triangles using the calculated spatial coor-
dinates. In an exemplary embodiment, the domain shader
260 generates primitives according to the domain face type
DFT and the output data topology OT included in the shared
data S_DATA of the group data structure GDS output from
the decoder 220 The domain shader 260 may output the
primitives to the geometry shader 270.

The geometry shader 270 may generate new primitives by
adding or removing vertices adjacent to the primitives
output from the domain shader 260. In an exemplary
embodiment, the geometry shader 270 generates new primi-
tives according to the output data topology OT included in
the shared data S_DATA of the group data structure GDS
output from the decoder 220. The geometry shader 270 may
output the new primitives to the rasterizer 280.

The rasterizer 280 may convert the new primitives output
from the geometry shader 270 into a plurality of pixels. The
pixel shader 290 may process the pixels. For instance, the
processing may be about the color or light and shade of the
pixels.

In an exemplary embodiment, the pixel shader 290 per-
forms computation operations to process the pixels. The
computation operations may include texture mapping and
color format conversion. The texture mapping may be an
operation of mapping a plurality of texels output from the
memory 400 to add details to a plurality of pixels. The color
format conversion may be an operation of converting a
plurality of pixels into an RGB format, a YUV format, or a
YCoCg format.

The output merger 295 confirms final pixels to be dis-
played on the display 300 among the processed pixels using
information about previous pixels and may generate color of
the final pixels. For instance, the information about the
previous pixels may include depth information, stencil infor-
mation, and color information. The information about the
previous pixels may be stored in the memory 400. The
output merger 295 may output pixel data (or image data)
about the final pixels to the memory 400.

The display 300 may display an image corresponding to
image data output from the display controller 140. The
display 300 may be implemented as a touch screen, a liquid
crystal display, a thin film transistor LCD (TFT-LCD), a
light emitting diode (LED) display, an organic LED (OLED)
display, an active matrix OLED (AMOLED) display, or a
flexible display.

The memory 400 may store programs and/or data to be
processed by the CPU 110A, the tessellation data generator
170, and/or the GPU 200A. For instance, the memory 400
may store data related with graphics processing, e.g., patch
data of a plurality of patches.

The memory 400 may be implemented as a volatile or
non-volatile memory. The volatile memory may be imple-
mented as DRAM, SRAM, thyristor RAM (T-RAM), zero
capacitor RAM (Z-RAM), or twin ftransistor RAM
(TTRAM). The non-volatile memory may be implemented
as electrically erasable programmable ROM (EEPROM),
flash memory, magnetic RAM (MRAM), spin-transfer
torque MRAM (STT-MRAM), conductive bridging RAM
(CBRAM), ferroelectric RAM (FeRAM), phase-change
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RAM (PRAM), resistive RAM (RRAM), nanotube RRAM,
polymer RAM (PoRAM), nano floating gate memory
(NFGM), holographic memory, molecular electronic
memory device, or insulator resistance change memory.

The non-volatile memory may be implemented as a
flash-based memory device such as a secure digital (SD)
card, a multimedia card (MMC), an embedded MMC
(eMMC), a universal serial bus (USB) flash drive, or a
universal flash storage (UFS). The non-volatile memory
may also be implemented as a hard disk drive (HDD) or a
solid state drive (SSD).

FIG. 8 is a block diagram of a data processing system 10B
according to an exemplary embodiment of the inventive
concept. Referring to FIG. 8, the data processing system 10B
includes a data processing device 100B, the display 300, and
the memory 400.

The data processing device 100B includes a CPU 110B,
the ROM 120, the RAM 130, the display controller 140, the
memory interface 150, and the GPU 200A. The tessellation
data generator 170 implemented within the data processing
device 100A illustrated in FIG. 1 may be implemented
within the CPU 110B.

The tessellation data generator 170 may be implemented
in hardware and/or software and may operate according to
the control of the CPU 110B. In other words, the CPU 110B
may analyze the patch data of a plurality of patches and
generate tessellation data (e.g., the shared data S_DATA
shared by the patches, the non-shared data NS_DATA that
are not shared by the patches, and the attribute data AD on
the attribute of control points of each of the patches) from
the patch data according to the analysis result.

In addition, the CPU 110B may maintain the group data
structure GDS relating to the shared data S_DATA, the patch
data structures PDS, through PDS,, relating to the non-
shared data NS_DATA, and the control point data structures
CDS, through CDS,, relating to the attribute data AD based
on the shared data S_DATA, the non-shared data NS_DATA,
and the attribute data AD. The CPU 110E may output the
data structures, e.g., the group data structure GDS, the patch
data structures PDS, through PDS,, and the control point
data structures CDS; through CDS,,, to the GPU 200A. The
data structures may be stored in the memory 400 according
to the control of the CPU 110B.

FIG. 9 is a block diagram of a data processing system 10C
according to an exemplary embodiment of the inventive
concept. Referring to FIG. 9, the data processing system 10C
includes a data processing device 100C, the display 300, and
the memory 400.

The data processing device 100C includes the CPU 110A,
the ROM 120, the RAM 130, the display controller 140, the
memory interface 150, and a GPU 200B. The tessellation
data generator 170 implemented within the data processing
device 100A illustrated in FIG. 1 may be implemented
within the GPU 200B.

The tessellation data generator 170 may be implemented
in hardware and/or software and may operate according to
the control of the GPU 200B. In other words, the GPU 200B
may analyze the patch data of a plurality of patches output
from the memory 400 and generate tessellation data (e.g.,
the shared data S_DATA shared by the patches, the non-
shared data NS_DATA that are not shared by the patches,
and the attribute data AD on the attribute of control points
of each of the patches) from the patch data according to the
analysis result.

In addition, the GPU 200B may maintain the group data
structure GDS relating to the shared data S_DATA, the patch
data structures PDS, through PDS,, relating to the non-
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shared data NS_DATA, and the control point data structures
CDS, through CDS,, relating to the attribute data AD based
on the shared data S_DATA, the non-shared data NS_DATA,
and the attribute data AD. The GPU 200B may perform an
operation, e.g., a tessellation operation, related with graphics
processing using the data structures, e.g., the group data
structure GDS, the patch data structures PDS, through
PDS,,, and the control point data structures CDS, through
CDS,. The data structures may be stored in the memory 400
according to the control of the GPU 200B.

FIG. 10 is a flowchart of a method of operating the data
processing system 10A, 10B, or 10C illustrated in FIG. 1, 8,
or 9 according to an exemplary embodiment of the inventive
concept. Referring to FIGS. 1 through 10, the data process-
ing device 100A, 100B, or 100C (collectively denoted by
100) analyze the patch data of a plurality of patches output
from the memory 400 in operation S110.

The data processing device 100 generates tessellation
data, e.g., the shared data S_DATA shared by the patches, the
non-shared data NS_DATA that are not shared by the
patches, and the attribute data AD on the attribute of control
points of each of the patches, from the patch data according
to the analysis result in operation S 130. The data processing
device 100 maintains the group data structure GDS relating
to the shared data S_DATA, the patch data structures PDS;
through PDS,,; relating to the non-shared data NS_DATA,
and the control point data structures CDS, through CDS,,
relating to the attribute data AD based on the shared data
S_DATA, the non-shared data NS_DATA, and the attribute
data AD in operation S150.

As described above, according to at least one exemplary
embodiment of the inventive concept, the patch data of a
plurality of patches is analyzed and hierarchical data struc-
tures are generated with respect to the patches according to
the analysis result. Since shared data that can be shared by
the patches is only once embedded in one of the hierarchical
data structures, when the hierarchical data structures are
transmitted to a GPU, waste of the bandwidth of data may
be prevented and power consumption for transmission of the
data may be reduced.

In addition, a patch data structure among the hierarchical
data structures may be efficiently compressed using data
similarity to adjacent patch data structures and a control
point data structure may also be efficiently compressed due
to high spatial locality of control points, so that the GPU
may prevent waste of the bandwidth of data and reduce
power consumption when reading the hierarchical data
structures from a memory.

At least one embodiment of the inventive concept can be
embodied as computer-readable codes having computer
executable instructions on a non-transitory computer-read-
able medium. For example, the operations of FIG. 7 or FIG.
10 may be embodied as computer executable instructions.
The computer-readable recording medium is any data stor-
age device that can store data as a program which can be
thereafter read by a computer system. Examples of the
computer-readable recording medium include read-only
memory (ROM), random-access memory (RAM),
CD-ROMs, magnetic tapes, floppy disks, and optical data
storage devices.

While the inventive concept has been particularly shown
and described with reference to exemplary embodiments
thereof, it will be understood by those of ordinary skill in the
art that various changes in forms and details may be made
therein without departing from the spirit and scope of the
inventive concept.
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What is claimed is:

1. A method of processing patch data of image data to
generate rendered image data, the method comprising:

analyzing the patch data of each of a plurality of patches;

generating shared data that is shared by the patches,
non-shared data that are not shared by the patches, and
attribute data on an attribute of control points of each
of the patches from the patch data according to a result
of the analyzing;

creating a group data structure relating to the shared data,
a patch data structure relating to each of the non-shared
data, and a control point data structure relating to each
of the attribute data based on the shared data, the
non-shared data, and the attribute data;

compressing the patch data structure and the control point
data structure; and

outputting tessellation data to a graphics processing unit
to generate the rendered image data, wherein the tes-
sellation data comprises the group data structure, the
compressed patch data structure, and the compressed
control point data structure.

2. The method of claim 1, wherein the shared data
comprises a number of control points, a partitioning type, a
domain face type, output data topology, and a tessellation
factor of the patches.

3. The method of claim 1, wherein the non-shared data
comprises an index of each of the control points included in
each of the patches and a tessellation factor of each patch.

4. The method of claim 1, wherein the group data struc-
ture comprises a pointer indicating each of patch data
structures respectively matching the patches related with the
group data structure.

5. The method of claim 1, wherein the group data struc-
ture comprises a pointer indicating a next group data struc-
ture to be transmitted following the group data structure and
the group data structure does not comprise the pointer
indicating the next group data structure when a size of the
group data structure is constant.

6. A system on chip (SoC) comprising:

a tessellation data generator configured to analyze patch
data of image data comprising a plurality of patches, to
generate a group data structure that is shared by the
patches, a patch data structure for each of the patches
that is not shared by the patches, and a control point
data structure comprising attribute data on an attribute
of control points of each of the patches from the patch
data according to a result of the analysis, and to encode
the data structures by compressing the patch data
structure and the control point data structure; and

a graphics processing unit (GPU) configured to decode
the encoded data structures and process data comprised
in the decoded data structures,

wherein the patch data structure comprises non-shared
data that is not shared by the patches and the non-
shared data comprises an index of each of the control
points included in each of the patches and a tessellation
factor of each patch.

7. The SoC of claim 6, wherein the group data structure
comprises shared data that is shared by the patches and the
shared data comprises a number of control points, a parti-
tioning type, a domain face type, and output data topology.

8. The SoC of claim 6, wherein the SoC is an application
processor.

9. The SoC of claim 6, wherein the tessellation data
generator is implemented within a central processing unit
(CPU).
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10. A data processing system comprising:

the SoC of claim 6;

a memory configured to store the patch data of each of the
patches; and

a memory interface configured to transmit the patch data
of each of the patches from the memory to the SoC.

11. A method of processing patch data of image data to

generate rendered image data, the method comprising:

generating a first data structure comprising shared data
that is common to each patch among a plurality of
patches;

generating a plurality of second data structures for each
patch, wherein each second data structure comprises
indices of all control points of the corresponding patch;

generating a plurality of third data structures for each
patch, wherein each third data structure comprises
attributes about the control points of a corresponding
one of the second data structures;

compressing each of the second and third data structures;
and
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outputting a hierarchal data structure to a graphics pro-
cessing unit to generate the rendered image data,
wherein the hierarchal data structure comprises the first
data structure, the second compressed data structure,
and the third compressed data structure.

12. The method of claim 11, wherein data within the
second data structures are unique from one another.

13. The method of claim 11, wherein the first data
structure includes a pointer to each second data structure,
and each second data structure includes a pointer to a
corresponding one of the third data structures.

14. The method of claim 11, wherein the first data
structure comprises a pointer to a next data structure to be
transmitted that comprises shared data that is common to
each patch among another plurality of patches.

15. The method of claim 11, wherein either the first data
structure includes a tessellation factor common to all the
patches, or each second data structure includes its own
distinct tessellation factor.
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